89. Molecular Polarisability. The Conformations of Five Cyclic Olefins.

By C.-Y. CHEN, R. J. W. LE FÈVRE, and K. M. S. SUNDARAM.

Molar Kerr constants and apparent dipole moments for the five hydrocarbons (I) to (V) in carbon tetrachloride are recorded and discussed in terms of possible non-planar conformations.

The measurements and calculations here reported concern hydrocarbons (I) to (V) for which no geometrically specified stereo-structures appear yet to have been established by experiment. In qualitative terms, Barton, Cookson, Klyne, and Shoppee¹ have described (I) as a puckered or "half-chair" form, for the atoms in which Corey and Sneen² have

published co-ordinates based on C-C and C=C distances of 1.55 and 1.34 Å, respectively; (II) of necessity must contain a "boat" C₆ skeleton; a number of choices exist for (III)—(V), some of which may be eliminated by considerations involving the anisotropies of polarisability of the C-C and C=C bonds.

EXPERIMENTAL

Materials.—Cyclohexene (B.D.H. product) was washed several times with aqueous ferrous sulphate until no further oxidation was apparent; the peroxide-free compound was then dried quickly over magnesium perchlorate and distilled, the fraction boiling at $83 \cdot 0 - 83 \cdot 4^{\circ}/760$ mm. being collected and stored under nitrogen; $n_{\rm D}^{25} 1.4436$, $d_4^{25} 0.8062$, ε^{25} (relatively to benzene, $\varepsilon = 2 \cdot 2725$) $2 \cdot 219_8$, whence $R_{\rm D} = 27 \cdot 04$ and ${}_{\rm T}P = 29 \cdot 45$ c.c., for the undiluted liquid. Bicyclo-(2,2,1)heptadiene (II) was a gift from the Shell Development Co. (Modesto, Calif., U.S.A.); it was distilled after drying over magnesium sulphate, b. p. $82 - 83^{\circ}/760$ mm., $n_{\rm D}^{20} 1 \cdot 4700$. Specimens of 1,3-cyclo-octadiene (III), b. p. $143^{\circ}/760$ mm., $n_{\rm D}^{20} 1 \cdot 4933$, 1,5-cyclo-octadiene (IV), b. p. $151^{\circ}/760$ mm., $n_{\rm D}^{20} 1 \cdot 4942$, and 1,5,9-cyclododecatriene (V), b. p. $95^{\circ}/13$ mm., $n_{\rm D}^{20} 1 \cdot 5072$ (from Cities Service Research and Development Co., Sixty Wall Tower, New York) were presented to us by Dr. N. A. Gibson of this Department.

Measurements.—Apparatus, procedures, notation, and methods of calculation have been

¹ Barton, Cookson, Klyne, and Shoppee, Chem. and Ind., 1954, 21.

² Corey and Sheen, J. Amer. Chem. Soc., 1955, 77, 2505.

those described in refs. 3-5. Observed increments, from solvent to solutions containing weightfractions w_2 of solute, in refractive index n, density d, dielectric constant ε , and Kerr constant B. are listed in Table 1; quantities calculated therefrom are in Table 2. For carbon tetrachloride as solvent, when $w_2 = 0$, $\varepsilon^{25} = 2.2270$, $d_4^{25} = 1.58454$, $n_D^{25} = 1.4575$, and $10^7 B_D^{25} = 0.070$.

TABLE 1.

Incremental refractive indexes, dielectric constants, etc., for solutions in carbon tetrachloride at 25°.

$10^{5}w_{2}$	$10^4\Delta n$	$10^{5}\Delta d$	104Δε	$10^{10}\Delta B$	$10^{5}w_{2}$	$10^4\Delta n$	$10^{5}\Delta d$	104Δε	$10^{10}\Delta B$
Solute: Cyclohexene				-	Solute :	1,3-Cvclo-od	ctadiene		
379		- 574			911	6	1164	61	5
718		1073			1149	0 7	1104	74	57
1903		1795			1140	6	1407	14	6
1415		1785			1271	.9	-1645	80	8
1410	-0.3	-2097			1322	10	1699	89	9
2031			73		1492	11	-1930	100	10
2037	-0.6	-2999			1620	12	-2107	108	11
2367	-0.7	-3482			1744	13	-2232	117	12
2523	-0.7	-3705			whence y	EAM/Sam -	- 0.079 . 5	A 12/ Sea	
2887				15	$\sum A d \sum$	$2\Delta n/\Delta a/2$.9884 . 54	$\Delta n^{-1} \Delta w_2$	= 0.212,
2968			107		2 <u>4</u> 4/2	$w_2 = -1$	·2004, 208	$c_1 \Delta w_2 = 0$.007;
3087	1	-4511				220/21	$v_2 = 0.052$	× 10 ·	
3808			137						
4559				21		Solute:	1,5-Cyclo-	octadiene	
4776				$\frac{1}{21}$	1000	10	1010	0.0	-
4899			175		1320	10	-1612	32	0
5211				23	2877	22	3488	71	10
6769				20	3706	28	-4484	91	12
0105				21	4712	36	-5665	114	17
whence Σ	$\Delta n / \Sigma w_2 =$	$-0.003; \Sigma \Delta$	$\Delta n^2 / \Sigma w_2 =$	= -0.009;	5411	41	-6472	130	19
$\Sigma \Delta d/d$	$\Sigma w_2 = -$	1·473; $\Sigma\Delta\epsilon$	$\Sigma w_2 = 0$	·359;	6756	52	-8004	157	23
	$\Sigma \Delta B / \Sigma i$	$w_2 = 0.442$	imes 10-7		whence y	$\Delta n / \Sigma_{n} =$	$= 0.076 \cdot \Sigma$	$\Lambda n^2 / \Sigma w_a =$	= 0.223
						$-\Delta d = 1$	$2357w_{*} = 0$.742810.2	- • 220,
Solute: 2,5-Bicycloheptadiene					$\Sigma_{\rm C} = 0.258$	m = 0.36	$5_{aa} 2 \cdot \Sigma \Lambda R/$	$\Sigma_{m} = 0.3$	47×10^{-7}
4596	12	-5264	97	15	<u> 26 - 0 200</u>	$w_2 = 0.000$	w_2 , $\Delta\Delta D_1$	$2w_2 = 0.5$	H I × 10
6267	15	-7058	125	21					
7740	$\overline{20}$	8657	147	23		Solute: 1,	5,9-Cyclodo	decatriene	
8293	23	9233	150	25	732	6	922	27	2
10 555	26	11 577	175	20	945	ŝ	1189	35	ลี้
19 915	20	12 4 22	105	39	1121	ő	1410	49	3
16 469	32 97		190	33	1945	10		42	
10,402	31		221	40	1240	10		40	5
18,028	44	- 19,346	230	43	1311	11	- 1002	50 50	5
22,881	52	-23,087	240	52	1399	12	-1760	23	0
whence $\Sigma \Delta n / \Sigma w_2 = 0.024$; $\Sigma \Delta n^2 / \Sigma w_2 = 0.071$:					1454	13		99	6
$\Delta d = -1 \cdot 2134 w_{2} + 0 \cdot 921 w_{2}^{2};$					whence Σ	$\Delta n / \Sigma w_n =$	$= 0.084; \Sigma$	$\Delta n^2 / \Sigma w_2 =$	= 0.248;
$\Delta \epsilon = 0.232 w_{0} - 0.5699 w_{0}^{2}$					$\Sigma \Delta d / \Sigma$	$w_{0} = -1$	·2573: ΣΔε	$z/\Sigma w_{o} = 0$)·375:
1	$0^7 \Delta B = 0$	·3496w ($).5904w^2$			$\Sigma \Delta B / \Sigma u$	$v_{s} = 0.3\overline{77}$	× 10-7	,
		4	2			,	4		

TABLE 2.

				∞P_{n}	$R_{\rm D}$				
Solute	αε1	-β	$\gamma' n_1^2$	(c.c.)	(c.c.)	μ (D) *	γ	δ	$10^{12} \infty ({}_{\rm m}K_2)$
Cyclohexene	0.359	0.9296	-0.075	$32 \cdot 2$	27.2	0.42	-0.005	6.32	4.97
2,5-Bicycloheptadiene	0.232	0.7657	0.071	32.0	28.7	0.31	0.012	4.99	4.60
1,3-Cyclo-octadiene	0.667	0.8131	0.212	43.6	36.3	0.52	0.049	9.31	8.72
1,5-Cyclo-octadiene 1,5,9,-Cyclododeca-	0.258	0.7798	0.223	38.2	35.8	0.12	0.052	4 ∙96	5.32
triene	0.375	0.7935	0.248	59.8	54.6	0.32	0.058	5.38	8.42
		*	Calc. with	$_{\rm D}P$ take	en as 1.03	$\delta R_{\mathbf{D}}.$			

³ Le Fèvre and Le Fèvre, *Rev. Pure Appl. Chem. (Australia)*, 1955, **5**, 261; Ch. XXXVI in "Physical Methods of Organic Chemistry," ed. Weissberger, Interscience Publ., London, **3**rd edn., Vol. 1, p. 2549.
⁴ Le Fèvre, "Dipole Moments," Methuen, London, 3rd edn., 1953, Ch. 2.
⁵ Le Fèvre and Sundaram, J., 1962, 1494.

DISCUSSION

Apparent Dipole Moments.—The moment of cyclohexene given in Table 2 is slightly smaller than has been reported previously (0.63 D in carbon tetrachloride or 0.75 D in)hexene,⁶ and 0.61 D as a gas ⁷). Smyth,⁸ noting that Kubo's observations ⁷ lead to a negative value for the atomic polarisation, comments that 0.6 D may be too high. From the total polarisation (29.45 c.c.) and molecular refraction (27.04 c.c.) now found for the pure liquid, a polarity of 0.34 D is indicated; autoxidation occurs readily, and after exposure to air specimens give higher polarisations than those quoted.

Conformations of Solutes.—Possible models of the molecules concerned are placed within an arbitrary set of XYZ axes and the principal polarisabilities computed by the method described in ref. 9. Bond polarisabilities (in 10⁻²³ c.c. units) required are: ³

	$b_{\mathbf{L}}$	$b_{\mathbf{T}}$	$b_{\mathbf{v}}$
СН	0.064	0.064	0.064
С-С	0.099	0.027	0.027
C=C	0.280	0.073	0.077

The molar Kerr constants to be expected for each conformation are then evaluated and compared with the $_{m}K$ from experiment.

For cyclohexene we consider two models (Ia) and (Ib); in both, carbon atoms 6, 1, 2, 3are in one plane, the X axes are from C(1) to C(2), and the Z axes are perpendicular to the 6, 1, 2, 3 plane. In (Ia) the CCC angles at the various C atoms are 2 at C(1) and C(2), $122^{\circ} 30'$, at C(3) and C(6), $111^{\circ} 12'$, at C(4) and C(5), $107^{\circ} 43'$, and the C · · · · C distances are for C=C, 1.34 Å, and for C-C, 1.55 Å; in (Ib) the corresponding quantities are 116° , 109° 28′, 112°, 1·34 and 1·54 Å, respectively. Co-ordinates for C(1) to C(6) are therefore:

Calculations of molar Kerr constants are summarised as Table 3. The observed $_{m}K$ being 4.97×10^{-12} , conformation (Ia) is to be preferred. The fact that the measured mK exceeds the greater of those calculated may indicate that a flatter structure than (Ia) would be more appropriate (e.g., we find that a planar form, based on the bond lengths used above for (Ib) and with angles at C(1) and C(2) of 116° , at C(4) and C(5) of 112° , and at C(3)and C(4) of $132^{\circ} 5'$, gives a calc. _mK of $7 \cdot 2 \times 10^{-12}$).

For bicyclo(2,2,1)heptadiene we consider structure (IIa), a "Barton" model ¹⁰ of which showed angles as follows: $a = 109^{\circ}$, $b = 92^{\circ}$, angle between planes I and II = 114°, and

⁶ Puchalik, Acta Phys. Polon., 1935, 4, 145.

⁹ Eckert and Le Fèvre, *J.*, 1962, 1081.

¹⁰ Barton, Chem. and Ind., 1956, 1136.

 ⁷ Kubo, Sci. Papers Inst. Phys. Chem. Res., Tokyo, 1937, 32, 26.
 ⁸ Smyth, "Dielectric Behavior and Structure," McGraw-Hill, New York, Toronto, London, 1955. p. 263.

TABLE 3.

Principal polarisabilities, moment components, etc., calculated for models (Ia) and (b).

	Dire	ction cosmes	WILLI	Moment	
Model	X	Y	Ζ	components	$10^{12}(_{\rm m}K)$ (calc.
(Ia) $\begin{cases} b_1 = 1.194 \\ b_2 = 1.039 \\ b_3 = 0.884 \end{cases}$	$0.997 \\ 0 \\ 0.072$	0 1 0	$-0.072 \\ 0 \\ 0.997$	$\left.\begin{array}{c} \mu_1 = 0 \\ \mu_2 = \mu_{\rm res.} * \\ \mu_3 = 0 \end{array}\right\}$	+3.6
(Ib) $\begin{cases} b_1 = 1.190 \\ b_2 = 1.030 \\ b_3 = 0.897 \end{cases}$	1 0 0	$0 \\ 0.852 \\ + 0.524$	$0 \\ -0.524 \\ 0.852$	$\left. egin{array}{c} \mu_1 = 0 \ \mu_2 = +0.358 \ \mu_3 = +0.220 \end{array} ight\}$	+1.9 ‡
* 0' 01 1 1	0 11		•	CC / TT 1 /	

* Since $2b_2 - b_1 - b_3 = 0$, the magnitude of μ_2 does not affect mK calc. † Were $\mu = 0.6$ D the mK calc. would be 0.5×10^{-12} .

that between I and III = 123°; the axis OX is parallel to the double bonds and OZ bisects the methylene angle b. The direction of action of the resultant moment is taken as OZ. The computed polarisability semi-axes for (IIa) emerge as $b_1 = 1.340_3$ (along OX), $b_2 = 1.001_5$ (along OY) and $b_3 = 0.974_6$ (along OZ); therefore $10^{35}\theta_1 = 1.48_2 \ 10^{35}\theta_2 = -0.48_4$, and $10^{12}{}_{\rm m}K$ calc. = 4.2. The approach of ${}_{\rm m}K$ calc. to that found (4.6 $\times 10^{-12}$) is satisfactory when the uncertainty of estimations of small moments is considered: had μ been measured as 0.27_5 D instead of 0.31 D the two ${}_{\rm m}K$'s would have been equal.

With 1,3-cyclo-octadiene (III) we note that, despite the positions of the double bonds, no marked exaltation of molecular refraction is apparent ($R_{\rm D}$ obs. = 36.3 c.c., calc. from bond refractions given by Vogel *et al.*¹¹ $R_{\rm D}$ = 36.2 c.c.). Were (III) a flat structure, its polarisability semi-axes would be: $b_1 = 1.499$ (along the bisector of the angle between the two C=C bonds), $b_2 = 1.499$, and $b_3 = 1.084$ (perpendicular to the ring-plane); with $\mu = 0.52$ D acting along b_1 , we have $10^{35}\theta_1 = 2.046$ and $10^{35}\theta_2 = 1.473$, whence $_{\rm m}K$ calc. = 14.8×10^{-12} . This is larger than the $_{\rm m}K$ obs. By making the model non-planar, prediction and experiment can be brought together; *e.g.*, if the two double bonds and their three associated single bonds are kept flat and the remaining single bonds arranged as specified above in cyclohexene, we have $b_1 = 1.516$, $b_2 = 1.449$, and $b_3 = 1.119$; then with $\mu = 0.52$ D $10^{35}\theta_1 = 1.610$, $10^{35}\theta_2 = 0.933$, and $_{\rm m}K$ calc. = 10.7×10^{-12} , which also exceeds the value from experiment. Furthermore, Leybold models show that the above two structures are highly strained. Since the absence of exaltation suggests that the

C=C-C=C unit is not coplanar, forms such as (IIIa) should be envisaged. When $\alpha = 30^{\circ}$ and $\beta = 40^{\circ}$ the following values emerge: $b_1 = 1.454$ (along the Y axis) $b_2 = 1.422$ (along the X axis), and $b_3 = 1.200$; with $\mu_1 = 0.52$ D acting on the Y axis, $10^{35}\theta_1$ is 0.682, $10^{35}\theta_2$ is 1.015, and $_{\rm m}K$ calc. = 7.14×10^{-12} . Small modification in α and β would lead to an $_{\rm m}K$ calc. = 8.72×10^{-12} , but these have not been evaluated as the small value observed is itself uncertain.

For 1,5-cyclo-octadiene, we first consider five models. If in (IV) as written, XYZ axes are placed with X and Y in the plane of the paper, with Y parallel to the C=C links, and Z at 90° to X and Y, the models may be described as follows: (IVa), with all bonds lying in the XY plane; (IVb), with the two double bonds in the XY plane but with the other

¹¹ Vogel, Cresswell, Jeffrey, and Leicester, J., 1952, 514.

bonds disposed spherically symmetrically; (IVc), with b_{XX} as in (IVb) but with bonds arranged so that $b_{YY} = b_{ZZ}$; (IVd), with the double bonds twisted oppositely by 20° about the X axis and the other bonds situated symmetrically, and (IVe), as (IVd) but with a twist angle of 30°. These structures should be non-polar; they are unlikely to be rigid, so that the small apparent moment (0·17 D) given in Table 2 does not make them unreasonable; their corresponding polarisability semi-axes, anisotropy terms, and molar Kerr constants are:

Model	b_{XX}	b_{YY}	b_{ZZ}	$10^{35}\theta_{1}$	$10^{12}(_{\rm m}K)_{\rm calc.}$
(IVa)	1.364	1.634	1.084	2.70	11.3_{5}
(IVb)	1.220	1.634	1.228	2.00	8·4ľ
(IVc)	1.220	1.431	1.431	0.588	2.47
(IVd)	1.220	1.586	1.276	1.39	5.85
(IVe)	1.220	1.532	1.330	0.983	3.76

Thus a conformation near to that specified as (IVd), and between (IVd) and (IVe), seems to fit the present observations. The further alternative non-polar form, with the double bonds in one plane and the CH_2 - CH_2 bonds in another parallel to the first, should show a resultant moment resembling that of (II) and acting along b_{ZZ} . However, with $\mu = 0.17$ D we find $b_1 = 1.562$ (parallel to the C=C bonds), $b_2 = 1.252$ (at 90° to the double bonds, but in their plane), $b_3 = 1.268$, $10^{35}\theta_1 = 1.086$, $10^{35}\theta_2 = -0.110$, and $_mK$ calc. = 4.10×10^{-12} ; this is less than the experimental value for $_mK$, and, were a larger moment presumed, would be more so. An additional objection to the last model is that in it the methylene C-H links are not staggered.

In 1,5,9-cyclododecatriene, let the arbitrary XYZ axes be placed with X and Y in the plane of (V); a flat model will be symmetrical about the Z axis, and therefore non-polar; b_{ZZ} and $b_{XX} = b_{YY}$ by calculation are 1.626 and 2.249, respectively, whence $10^{35}\theta_1$ becomes 4.47 and the predicted $_{m}K = 18.8 \times 10^{-12}$. This is too large. Next, we suppose that only the three C=C bonds remain in the XY plane and that all the other bonds are disposed spherically symmetrically; then μ is again zero, $b_{XX} = b_{YY} = 2.141$, $b_{ZZ} = 1.842$, and $10^{35}\theta_1 = 1.06$; $_{m}K$ calc. is 4.46×10^{-12} , which is less than that observed. Finally we assume a structure (Va) in which an XY plane is defined by C(3)C(7)C(11), and in which the double bonds are inclined at α° to this plane (Va) can be viewed as corresponding to three cyclohexene-like portions united as a 3-bladed propellor). Then, for $\alpha = 10$ or 15° , we have (for a non-polar molecule):

α°	$b_1 = b_2$	b_{3}	$10^{35}(\theta)$	$10^{12} (_{\rm m} K)_{\rm calc.}$
10	2.190	1.750	2.301	9.68
15	2.173	1.784	1.798	7.56

The $_{m}K$ as measured is between these values. A scale model of (Va) is somewhat flexible.

(Va)

and it is between these values. It scale model of (va) is somewhat hexible, and it is therefore unlikely that in fact all six C-H moments associated with the three olefinic bonds are cancelled vectorially. We suspect, but cannot prove, that the apparent moment observed is too high; even so, were it real, it would need to act at 40—50° to the XY plane in the above versions of (Va) to lead to the observed $_{\rm m}K$; such a disposition is not unreasonable; alternatively, a smaller real moment of 0.16-0.17 D could act at 90° to the XY plane and also give an $_{\rm m}K$ calc. of 8.4×10^{-12} .

Conclusions.—For none of these hydrocarbons is a planar conformation reconcilable with the observed molar Kerr constants. Non-planar models, more satisfactory in this respect, can be specified. These are: (Ia) for cyclohexene, (IIa) for bicycloheptadiene, (IIIa) for 1,3-cyclo-octadiene, (IVd) for 1,5-cyclo-octadiene, and (Va) for 1,5,9-cyclododecatriene.

UNIVERSITY OF SYDNEY, N.S.W., AUSTRALIA.

[Received, May 15th, 1964.]